Share this content on Facebook!
17 Mar 2017

Nowadays, the deployment of DWDM solution has been hotly debated in many enterprise networks, especially in the new Lay2 and Lay3 equipment like Arista 7500E series switches. For many enterprises, DWDM network solutions are undoubtedly the best choices of action, because they can provide a scalable and elastic solution for the enterprise that offered high bandwidth and data separation. This article will demonstrate DWDM solutions to Arista 7500E switches which are the foundation of two-tier open networking solutions for cloud data centers.

Analysis of DWDM System

DWDM (Dense Wavelength Division Multiplexing) is a technology allowing high throughput capacity over longer distances commonly ranging between 44-88 channels and...



14 Mar 2017

AON (Active Optical Networks) and PON (Passive Optical Network) serve as the two main methods of building CWDM and DWDM backbone network. Each of them has their own merits and demerits. This article will compare them according to their different features and applications.

AON

An active optical system uses electrically powered switching equipment, such as a router or a switch aggregator, to manage signal distribution and direction signals to specific customers. This switch directs the incoming and outgoing signals to the proper place by opening and closing in various ways. In such a system, a customer may have a dedicated fiber running to his or her house. The reliance of AON on Ethernet technology makes interoperability among...



14 Mar 2017

AON (Active Optical Networks) and PON (Passive Optical Network) serve as the two main methods of building CWDM and DWDM backbone network. Each of them has their own merits and demerits. This article will compare them according to their different features and applications.

AON

An active optical system uses electrically powered switching equipment, such as a router or a switch aggregator, to manage signal distribution and direction signals to specific customers. This switch directs the incoming and outgoing signals to the proper place by opening and closing in various ways. In such a system, a customer may have a dedicated fiber running to his or her house. The reliance of AON on Ethernet technology makes interoperability among...



07 Mar 2017

Growing demands of the internet users is one of the reasons that lead using wavelength division multiplexing (WDM) networks to transmit optical data. So, what is WDM? WDM is a technology that multiplexes various optical signals through a single optical fiber by taking advantage of different wavelengths of laser light. And the ITU-T recommendation specifies the wavelengths used in CWDM/DWDM or OADM. All the passive fiber optic components are made of filters that only allow specific wavelength to pass through a fiber port and then the others to be reflected to another fiber ports.

WDM Network Overview

A WDM network uses a multiplexer at the transmitter to join the several signals together, and a demultiplexer at the receiver to split...



03 Mar 2017

DWDM (Dense Wavelength Division Multiplexing) is used to increase the amount of information or systems that can be transmitted over a single fiber, thus allowing allow for more channels with much tighter channel spacing. In DWDM systems, DWDM devices combine the output from several optical transmitters for transmission across a single optical fiber. At the receiving end, another DWDM device separates the combined optical signals and passes each channel to an optical receiver. This article covers DWDM system components that combine (multiplex) and separate (demultiplex) multiple optical signals of different wavelengths in a single fiber.

Optical Transmitters/Receivers

As the light sources in a DWDM system, the optical transmitters...



27 Feb 2017

As fiber optic networks have developed for higher speeds, longer distances, and wavelength-division multiplexing (WDM), fibers have been used in new wavelength ranges, namely "bands". Fiber transmission bands have been defined and standardized, from the original O-band to the U/XL-bands. This article will mainly illustrate the evolution of the typical fiber transmission bands used for different optical telecom systems.

Among these bands, the O-band, also called the Original-band, was the first band used in optical telecommunication because of the small pulse broadening (small dispersion); Single-mode fiber transmission began in the "O-band" just above the cutoff wavelength of the SM fiber developed to take advantage of the lower loss...



21 Feb 2017

In today’s world of intensive communication needs and requirements, fiber optic cabling has become increasingly popular. But considering the physical fiber optic cabling is expensive to implement for each individual service, using a Wavelength Division Multiplexing (WDM) for expanding the capacity of the fiber to carry multiple client interfaces is a highly advisable. WDM MUX/DEMUX (Multiplexer/De-Multiplexer) is one of the most important components in WDM systems. But there are so many types of ports which are not so easy to identify. This article will illustrate various ports with different functions on WDM Mux/Demux.

Common Ports on WDM Mux/Demux

For WDM Mux/Demux, channel port and line port are the most common and necessary...



10 Feb 2017

As we all know, the advantages and disadvantages of shielded and unshielded twisted-pair cable are under debate for a long time. Advocates of STP cable, which includes screened twisted-pair and foil twisted-pair cables, claim that it is superior to UTP cable. Shielded versus unshielded twisted-pair cable, which is the winner? This post will give you the answer.

STP and UTP cable differ in design and manufacture. But their purpose should be the same--to provide reliable connectivity of electronic equipment. In theory, both types of cable should do this equally well. The true test comes when you look at how each of these cable types performs that task within its respective end-to-end system.

Shielded vs. Unshielded Twisted-Pair Cable

Shielded Twisted-Pair Cable

Shielded...



06 Feb 2017

Have you ever wired a cable directly into a piece of hardware? Some equipment in the past years provided terminals or termination blocks so that cable could be wired directly into a direct component. At the ends of the cables you install, something must provide access and transition for attachment to system electronics. Thus, you need connectors.

Connectors usually have a male component and a female one, except in the case of hermaphroditic connectors such as the IBM data connector. Jacks and plug are usually systematically shaped, but sometimes they are keyed, which means that they have a unique, asymmetric shape or some system of pins, tabs and slots that ensure that the plug can be inserted only one way in the jack. This article...



04 Feb 2017

Ethernet cables or networks cables are used for data transmission between devices on a network. They consist of a copper cable with 4 pairs of wires and connected by RJ45 connectors on each end of the cable. Most Ethernet cables in use today are either Cat5e and Cat6 which offer higher data transfer rates than the older types such as Cat5 and Cat4. Although various types of Ethernet cables look the same, the internal wiring distinguishes. Ethernet cables can come in two different wiring applications: straight-through and crossover, each of them with different wire arrangement in the cable for serving different purposes.

Straight-Through Ethernet Cables

Straight-through cable is the most common type and is used to connect different...